Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Xiao-Lan Luo, ${ }^{\text {a }}$ Wei Wang, ${ }^{\text {b }}$
Guo-Chun Ma ${ }^{\text {a }}$ and Wen-Qin Zhang ${ }^{\mathbf{a} *}$
${ }^{\text {a }}$ Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemical Engineering, Anshan University of Science and Technology, Anshan 114002, People's Republic of China

Correspondence e-mail: wqzhang@tju.edu.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.051$
$w R$ factor $=0.138$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,1'-Diphenyl-5,5'-[o-phenylenebis(methylene-thio)]di-1 H -tetrazole

In the crystal packing of the title compound, $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{~S}_{2}$, the two terminal (1-phenyltetrazol-5-yl)sulfanyl groups adopt a trans configuration with respect to the central benzene ring and the dihedral angle between the two tetrazole planes is $54.2(2)^{\circ}$.

Comment

Early studies reported that several tetrazole derivatives possess diverse pharmacological properties (Juby et al., 1968, 1982) and the crystal structures of complexes of several monosubstituted tetrazole derivatives were studied (Heuvel et al., 1983; Lyakhov et al., 2003). However, there are few studies on tetrazole derivatives containing two or more tetrazole groups. We have reported some tetrazole derivatives using flexible chains as linkers, such as 1,2-diethyl, 1,6-dihexyl, and 1,4-dibutyl (Wang et al., 2004a,b, 2005). We report here a new tetrazole derivative using rigid 1,2-phenylene as linker, namely $1,1^{\prime}$-diphenyl- $5,5^{\prime}$-[o-phenylenebis(methylenethio)]di1 H -tetrazole, (I).

(I)

The two terminal (1-phenyl-1,2,3,4-tetrazol-5-yl)sulfanyl groups adopt a trans configuration with respect to the central benzene ring (Fig. 1) and the dihedral angle between the two tetrazole planes is $54.2(2)^{\circ}$. The improper torsion angle of the two $\mathrm{C}-\mathrm{S}$ bonds ($\mathrm{S} 1-\mathrm{C} 8 \cdots \mathrm{C} 15-\mathrm{S} 2$) is $134.2(3)^{\circ}$, forcing the two 1-phenyl-1,2,3,4-tetrazole rings to extend in opposite directions to minimize the steric hindrance. The dihedral angles between the two tetrazole rings and the central benzene ring are 62.7 (1) and 116.8 (2) ${ }^{\circ}$. The dihedral angle between the two benzene rings (attached to tetrazole rings) is 40.2 (2) ${ }^{\circ}$.

The $p-\pi$ conjugation of atom S1 with the tetrazole ring affects the bond distance C7-S1 [1.730 (3) \AA] which is shorter than $\mathrm{C} 8-\mathrm{S} 1[1.833$ (3) \AA]. This effect is also observed for S2 and for other tetrazole-thio derivatives.

An isomer of (I) is reported in the following paper (Wang et al., 2005).

Experimental

A solution of 1,2-dibromomethylbenzene ($1.32 \mathrm{~g}, 5 \mathrm{mmol}$) in tetrahydrofuran (10 ml) was added dropwise to a mixture of 5-mercapto-

Received 7 March 2005 Accepted 22 March 2005 Online 31 March 2005

Figure 1
View of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.

1-phenyl-1,2,3,4-tetrazole $(1.96 \mathrm{~g}, 11 \mathrm{mmol}), \mathrm{KOH}(0.62 \mathrm{~g}, 11 \mathrm{mmol})$ and ethanol $(20 \mathrm{ml})$. The reaction mixture was then stirred for 24 h at room temperature. The precipitate was filtered off, washed with water and recrystallized from ethanol (yield 78%, m.p. $433-434 \mathrm{~K}$). IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3064 (w), 2361 (m), 1595 (m), 1500 (s), 1456 (w), 1391 (s), 1275 (m), 1240 (s), 1092 (m), 1074 (m), 1017 (m), 919 (w), 764 (s), $692(s), 555(m) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.75(s, 4 \mathrm{H}), 7.24-7.54(m, 14 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 34.94,123.79,129.11,129.78,130.16,133.93$, 153.55. Analysis calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{~S}_{2}$: C 57.64, H 3.93, N 24.45%; found: C 57.79, H 3.90, N 24.38%. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in a mixture of acetonitrile and chloroform in the volume ratio 1:1.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{~S}_{2}$	Mo K α radiation
$M_{r}=458.56$	Cell parameters from 908
Orthorhombic, Pbca	reflections
$a=12.485(4) \AA$	$\theta=2.4-21.8^{\circ}$
$b=13.666(4) \AA$	$\mu=0.27 \mathrm{~mm}^{-1}$
$c=25.801(8) \AA$	$T=273(2) \mathrm{K}$
$V=4402(2) \AA^{3}$	Block, colourless
$Z=8$	$0.24 \times 0.20 \times 0.16 \mathrm{~mm}$
$D_{x}=1.384 \mathrm{Mg} \mathrm{m}^{-3}$	

Data collection

Bruker SMART CCD area-detector	3881 independent reflections
\quad diffractometer	2519 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.065$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-14 \rightarrow 13$
$T_{\min }=0.820, T_{\max }=0.960$	$k=-16 \rightarrow 15$
21475 measured reflections	$l=-30 \rightarrow 20$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.138$
$S=1.05$
3881 reflections
277 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0559 P)^{2}\right. \\
\quad+2.6547 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.005 \\
\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

All H atoms were positioned geometrically and refined in a riding model ($\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$), with $U_{\text {iso }}$ values set at $1.2(\mathrm{CH}$ and $\left.\mathrm{CH}_{2}\right)$ or $1.5\left(\mathrm{CH}_{3}\right)$ times $U_{\text {eq }}$ of the parent atom.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Heuvel, E. J. van den, Franke, P. L., Verschoor, G. C. \& Zuur, A. P. (1983). Acta Cryst. C39, 337-339.
Juby, P. F., Hudyma, Y. W. \& Brown, M. (1968). J. Med. Chem. 11, 111-117.
Juby, P. F., Hudyma, Y. W., Brown, M., Essery, J. M. \& Partyka, R. A. (1982). J. Med. Chem. 25, 1145-1150.
Lyakhov, A. S., Gaponik, P. N., Degtyarik, M. M. \& Lvashkevich, L. S. (2003). Acta Cryst. E59, m38-m40.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, W., Liu, H. M. \& Zhang, W. Q. (2004a). Acta Cryst. E60, o1279-o1280.
Wang, W., Liu, H. M. \& Zhang, W. Q. (2004b). Acta Cryst. E60, o1979-o1980.
Wang, W., Liu, H. M. \& Zhang, W. Q. (2005). Acta Cryst. E61, o206-o207.
Wang, W., Zhao, B., Zheng, P.-W. \& Duan, X.-M. (2005). Acta Cryst. E61, o1163-o1164.

